• Name: Daniel Fologea, Ph.D.
  • Institution: Boise State University
  • Department: Physics
  • Phone: 208-426-2664
  • Email: danielfologea@boisestate.edu

Summary: My research interests are focused on membrane biophysics with a special emphasis on transport of ions and molecules through artificial and natural membrane systems and ligand-membrane interactions. The transmembrane transport is a crucial component of the cellular machinery in health and disease, responsible for the correct functionality of any cell.  In addition, harnessing and controlling the transmembrane transport of molecules open novel avenues for developing artificial membrane-based carriers for targeted and controlled drug delivery at precise locations in the human body. Ligand-membrane interactions are important components of the attack mechanisms presented by toxins and viruses; they may be exploited for development of novel adjuvant therapy strategies intended to prevent and mitigate bacterial and viral infections.

Minimum Classes: N/A


The first proposed research project for a potential INBRE Summer Fellow aims at understanding how the transport of inorganic and inorganic ions through artificial lipid membrane systems is modulated by mechanical stress induced into the membrane. The experimental work of this project includes preparation of planar lipid membranes, application of controlled pressure on one side of the membrane until a desired curvature and mechanical stress are achieved, and measurements of the membrane permeability to ions. The student will learn how to prepare planar lipid membranes and characterize their integrity from capacitance and conductance measurements, model the membrane system as a spherical shell to determine the relation between curvature and mechanical stress, measure the curvature, determine the permeability to ions by employing an Axopatch200B electrophysiology amplifier, and establish mathematical relationships between mechanical stress and permeability. The experimental work will be completed by implementing a transmembrane transport model based on the transition state theory, which will account for the free energy term introduced by the mechanical stress.

The second proposed project pertains to the use of liposomes as traps for toxins and viruses based on their high affinity for particular components of the membrane. The experimental work of this projects implies producing liposomes that contain in their membrane either lipids or receptors known as targets for viruses and toxins. The toxins we will work with are cholesterol-dependent cytolysins (streptolysin, and tetanolysin), and the T4 phage will be used as a virus model (owing to its inability to infect humans). The liposomes’ ability to prevent lysis will be tested by using sheep red blood cells and measuring the hemolysis rate. Viral infection prevention will be tested by employing non-pathogenic E. coli strains as target cells and estimating their viability with and without liposomes added to the culture medium.

Contact Us

We're not around right now. But you can send us an email and we'll get back to you, asap.

Not readable? Change text.

Start typing and press Enter to search